11.6 Videos Guide

11.6a

• The Ratio Test:

(i) If
$$\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = L < 1$$
, then the series $\sum a_n$ is convergent (ii) If $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = L > 1$ or is ∞ , then the series $\sum a_n$ is divergent (iii) If $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = 1$, the Ratio Test is inconclusive

Exercises:

Use the Ratio Test to determine whether the series is convergent or divergent.

11.6b

$$\bullet \quad \sum_{n=1}^{\infty} \frac{(-2)^n}{n^2}$$

$$\bullet \quad \sum_{n=1}^{\infty} \frac{n^{10}}{(-10)^{n+1}}$$

11.6c

$$\bullet \quad \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

11.6d

•
$$\frac{2}{3} + \frac{2 \cdot 5}{3 \cdot 5} + \frac{2 \cdot 5 \cdot 8}{3 \cdot 5 \cdot 7} + \frac{2 \cdot 5 \cdot 8 \cdot 11}{3 \cdot 5 \cdot 7 \cdot 9} + \cdots$$

11.6e

• The Root Test:

(i) If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$$
, then the series $\sum a_n$ is convergent

(ii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or is ∞ , then the series $\sum a_n$ is divergent

(iii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive

Exercises:

• Use the Root Test to determine whether the series is convergent or divergent.

11.6f

Exercises:

• Use any test to determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\begin{array}{ll}
\circ & \sum_{n=1}^{\infty} \left(\frac{1-n}{2+3n}\right)^n \\
\circ & \sum_{n=1}^{\infty} \frac{\sin(n\pi/6)}{1+n\sqrt{n}}
\end{array}$$

$$0 \quad \sum_{n=1}^{\infty} \frac{\sin(n\pi/6)}{1+n\sqrt{n}}$$